PV (Proportional Valve) (0-10v Modulation) Eng Manual

Ver 18.6.01.-134 Release Date 2-3-21

Title Page © 2003 Comeragh Controls Ltd No part of this document may be reproduced by any process without the prior written permission from Comeragh Controls Ltd.

The information in this document is provided for reference only. While every effort has been made to make sure it is accurate and complete, Comeragh Controls Ltd does not accept any liability arising out of the application or use of the information or products described herein. Moreover, Comeragh Controls Ltd reserves the right to alter specifications or procedures without notice.

This document may contain or refer to information or products protected by copyright or patents and does not convey any license under the patent rights of Comeragh Controls Ltd nor the rights of others.

All products referred herein are trademarks of their respective owners.

Publication details:

Title: iCon Touch Screen User Manual *Part Number:* CC-200TSEM

Produced by: Product Support Department Comeragh Controls Ltd Upper Irish Town Clonmel Co. Tipperary

1. Access Engineering Menu

Setu	р р		
	User Manual	Saving Tips	Install - Basic
	Date/Time	Edit Zone Labels	Install - Advanced
8.5.14-21			
		; 	,
Step 2	. Press	- Install A	Advanced

2. Engineering Menu – PV (Proportional Valve) (0-10v Modulation)

3 1 Proportional Valve (0-10v Port) - Rasic

3.1 Proportional Valve (0-10v Port) – Basic	1/0 #1 PV Overview Each R16 I/O (Logic Box) has a 0-10v modulation port.
W/RV #1 - /PV #9 Max Max Cutoff High D.Max Flow-Src -,/PV #2 -,/PV #10 0 0 0 0 0 Aux Sensor Idx -,/PV #3 -,/PV #11 0 0 0 0 0 0 Idx -,/PV #3 -,/PV #12 0	 Load Line A Comment Only App Weather Compensation Flow Temp Source Aux Sensor Idx Flow Sensor Min Flow 0-99 Max Flow 0-99 Cut Off 0-99 Cut Off 0-99 Flow Temp: Enable or disable feed back from flow sensor Reference Source Aux Sensor
Note Grey Out Fields Basic	ldx External Sensor Min 0-99 Max 0-99
Not Adjustable Only applies to PV output #1 Load Line B Not applicable Load Line A Only App Weather Compensation Load Line Direction The load line can be change from incline to decline by simply clicking on the load line image	IntervalsAdjust to set the response time of the 01-0v port (Sec) Min & Default setting 20 sec for each stepSwitchNot available on BasicCutOff Hi Enable Limit 0-10v output to a set Hi level e.g. 8v Must be left check for cut off to operateCutOff Lo Enable Limit 0-10v output to a set Lo level e.g. 2v Must be left check for cut off to operateEmulate:Enables the system to be tested before shippingCal:Enables 0-10v D(Desired) Max, D Min to be calibrate Check box to edit cal, Cal will be in effect irrespective of check box Max o/p voltage is 10vEnable Flow:Enables close loop feed back from a flow sensors NT Low LimitMilditional Comments:
Comms Check for I/O Board Comms Check for PV8 Board	Error If problem encounter – Error note displayed DAC (Digital Analogue Converter) Only for engineer reference: Valve opens 0-10v in 255 digital steps ComeraghControls

3.2 Proportional Valve (0-10v Port) – **Basic** - (Example Weather Compensation)

Sample Setup: Weather Compensation

Step 1: Decide which I/O (Relay Board) will be managing the mixer (I/O#1-8) Step 2: Load Line A ,(Basic)

(Advanced System) load line B can be used if you are switching to e.g. cooling via the same mixer.

Step 3: External Temp Set up your reference

Note you will need to assign items in Environment Tab & Aux Tab

Aux Sensor	
External Sensor	
0	(Range 0-99)
20	(Range 0-99)
	External Sensor 0 20

Sept 4 Flow Temp: Enable feed back from flow sensor

Step 5: Set up your required flow temperatures

Source	Aux Sensor	
ldx	Flow Sensor	
Min Flow	25	(Range 0-99
Max Flow	55	(Range 0-99
Cut Off	50	(Range 0-99

Operation:

The system will now monitor the outside temperature and based on your load line setting, it will calculate a desired Flow Temperature (DF) . The system will now check the actual flow temp (FT) Depending on whether the DF is greater or less then the FT, the proportional valve (PV) output (0-10v) will either step open or close. Depending on (Δ T) the difference between DF and FT, the 0-10v output the modulate in at a faster or slower rate. [Δ T>3°c Step = .8v] [3°> Δ T>2°c Step = .4v] [2°> Δ T>.5°c Step = .2v]

Environment Set the Max A	Tab ux Sensor to	0 2]				
Environment Password Eng Payment	3 ÷ 1 ÷	0 + 5	🕂 🔽 Enab	ble	Installer	0 📩 0	÷ 0	÷ 0 ÷
Network Max Zone	⊧s β2 ÷ Max	I/O 8 🔹	Max Aux Senso	rs 9	• =	Port 56	÷ 🗸	Enable
Aux Tab Set Idx 1 – External Sensor Set Idx 1 – External Sensor								
Aux Senso	rs	Channel			Air SP	P	robe SP	Temp
1 Et_Sensor	-	Ch2 - Probe Tem	perature	Ŧ	0 🗄	0	-	0°C
2 [Row_Temp 3 [Ref_Temp	•	Ch2 - Probe Tem Ch2 - Probe Tem	perature perature	•	0 1	0		0°C 0°C

3.3 Proportional Valve (0-10v Port)- Advanced Overview

Overview Each i/o (Logic Box) has a 0-10v modulation port. Each 0-10v port can be configured for different application such as; Weather Compensation Cooling flow temperature modulation [Referencing the Return Temp] Cooling flow temperature modulation [Referencing the Zone] Cooling flow temperature modulation [Referencing the Hottest Zone] CutOff Hi Enable Limit 0-10v output to a set Hi level e.g. 8v Must be left check for cut off to operate CutOff Lo Enable Limit 0-10v output to a set Lo level e.g. 2v Must be left check for cut off to operate Only operate when 0-10v output is running (i.e. above 1) Emulate: Enables the system to be tested before shipping Note Fast DAC Response for test Note Physical 0-10v output not update in this mode Cal: Enables 0-10v D(Desired) Max, D Min to be calibrate Check box to edit cal, Cal will be in effect irrespective of check box Emulation must be switch OFF during cal. Use sensor to adjust SP to move the DAC output Enables close loop feed back from a flow sensors Enable Flow: Enable Dec Pt: This enable decimal point values Night Time Low Limit (Display at Output Low) NT Low Limit This value (e.g. 2v) will override the 0-10V at set times (Note Night Time Sch Cl – Enabled in Environment) (Enable by end user in Advance Zone settings) (NT Check Box & Value Hidden - Check NT to see value) Use only for cooling via Underfloor Pipework **Reverse DAC:** Typically the 2nd Load Line is use for 0-10 control on FCU (Fan Coil Unit) cooling. However the cooling can be via the uf pipe work. For cooling via uf pipe, the DAC needs to be in reverse. **Reference is Flow Temp** If Actual flow is above Calculated Flow, Mix Opens allows more cold water If Actual flow is **below** Calculated Flow, Mix Closes allows less cold water (Without Reverse DAC, the mixer operate normally (for Hot Water) (i.e if AF>CF =Close Mixer to reduce the HOT water flow)

(i.e. if AF<CF= Open Mixer to Increase the for water flow)

3.4 Proportional Valve (0-10v Port)- Advanced Example – Cooling via FCU (LL1)

PV #1 [:L:	Primary		
x,√/PV #1	-,-/PV #9		Output DAC: 8 Max	Cutoff High D.Max
-,-/PV #2	-,-/PV #10		8 🚔 . 0 🎽	0 🚔 3 🚔
-,-/PV #3	-,-/PV #11		Min	Cutoff Low D.Min
-,-/PV #4	-,-/PV #12			2 0 8 1
-,-/PV #5	-,-/PV #13			
-,-/PV #6	-,-/PV #14	23		Zone
-,-/PV #7	-,-/PV #15	Туре	Туре	Idx
-,-/PV #8	-,-/PV #16	SP + DB	SP + DB + F3 · 💌	Kit-Liv
		Reference Emul	In: 20	
Interval(s)	Switch	Idx	Cutoff Hi Enable	Enable Flow
20	Relay	IO #8	Cutoff Lo Enable	🔽 Enable Dec Pt
	 Primary Secondary 	Rly #8	Emulate Cal	Nt Low Limit

Load Line A Comment	Typical App Cooling Modulation Ref Individual Zones		Load Line B Comment	Typical App Cooling Modulation Ref Hottest Zones		
Reference	Source Idx Min Max	Zone Kitchen SP+DB SP+DB+F3	Reference	Source Idx Min Max	Hottest Zone (dt) (n/a) SP+DB SP+DB+F3	
□ Flow Temp:	Enable or disable feed back from flow sensor Normally disable for e.g. FCU		□ Flow Temp:	Enable or di flow sensor Normally di	isable feed back from sable for e.g. FCU	

Hottest Zone (dt)

The system is intelligent, it first finds the hottest zone and uses it Delta Temp (dt) difference between it's Room Temp & Room SP+DB, to decide mix o/p

3.5 Proportional Valve (0-10v Port)- Advanced Example – Heating via UFH Pipe work (LL1)

0-10v: Heating Setup (Load Line 1)

3.6 Proportional Valve (0-10v Port)- Voltage Steps

Results: In steps of .8, .4, .2 +/- volts or Full Open/Closed								
IF DT>5	IF PT> MPT	IF Dt>3	IF 3>Dt>2	IF 2>Dt>.5	IF5 <dt>.5</dt>	IF2 <dt<5< td=""><td>IF- 3 <dt<-2< td=""><td>IF Dt<-3</td></dt<-2<></td></dt<5<>	IF- 3 <dt<-2< td=""><td>IF Dt<-3</td></dt<-2<>	IF Dt<-3
-	CLOSE FULL	-	-	-	-	-	-	-
-	CLOSE FULL	-	-	-	-	-	-	-
-	-	8 VOLTS	-	-	-	-	-	-
-	-	8 VOLTS	-	-	-	-	-	-
-	-	8 VOLTS	-	-	-	-	-	-
-	-	-	4 VOLTS	-	-	-	-	-
-	-	-	4 VOLTS	-	-	-	-	-
-	-	-	-	2 VOLTS	-	-	-	-
-	-	-	-	2 VOLTS	-	-	-	-
-	-	-	-	-	NO ACTION	-	-	-
-	-	-	-	-	-	+.2 VOLTS	-	-
-	-	-	-	-	-	+.2 VOLTS	-	-
-	-	-	-	-	-	-	+.4 VOLTS	-
-	-	-	-	-	-	-	+.4 VOLTS	-
-	-	-	-	-	-	-	-	+.8 VOLTS
-	-	-	-	-	-	-	-	+.8 VOLTS
-	-	-	-	-	-	-	-	+.8 VOLTS
OPEN FULL	-	-	-	-	-		-	-
OPEN FULL	-	-	-	-	-	-	-	-

Closed Loop Control

4. Aux Sensors

			J (
x	Name		Channel	<u>/</u>	Set Point #1	Set Point #2	Temp
	Est_Serace	¥	Ch2 - Probe Temperature	•	0 -	0 🚖	0°C
	Row_Temp	*	Ch2 - Probe Temperature	•	0 ==	0 封	0°C
	Row_Temp	٠	Ch2 - Probe Temperature		0 🗄	0 3	orc
	Row_Temp	٠	Ch2 - Probe Temperature	*	0 🗄	0 🗄	0°C
	Flow_Temp	*	Ch2 - Probe Temperature		0 ==	0 😒	0°C
	Flow_Temp	÷	Ch2 - Probe Temperature	•	0 ±	0	0°C
	Row_Temp	÷	Ch2 - Probe Temperature	•	0 🗄	0 🗄	0°C
ŧ.	Flow_Temp	٠	Ch2 - Probe Temperature	٠	0 3	0 封	0°C
ŧ.	Row_Temp	٠	Ch2 - Probe Temperature	*	0 =	0 ====	0°C
0	Row_Temp	*	Ch2 - Probe Temperature		0 =	0 ===	0°C

,					
Overview: The Aux sensors are typically used in conjunction with the 0-10v Proportional Valve (PV)					
Typical Application External Weather Compensation Cooling flow temperature modulation Differential temperate control					
Aux Sensors					
ldx	Identification N	lumber			
Name	External	(External Sensor)			
1	Flow	(Flow Sensor)			
	Ref	(Reference Sensor)			
-	Temperature	(General – Temperature Sensor)			
Channel	Ch2 – Probe Te	mp (Default Reference)			
	Ch1 – Air Temp)			
Set Point #1 /2	Set Point temp	for Ch1 (Air) & Ch2 (Probe)			
Тетр	Actual measure	ed temp			

5. Schedule Cooling Max

- b) Individual Zone Advance settings
 - Enable Night Time Max Cooling

	Sensor Button Lock
Set Back (PC)	O'on @ off
	Optomization
	O off Auto
	O Curve 1 O Curve 2 O Curve 3
	Night Cooling Limiter
	Enable

C) When active: "L" (Limiter) displayed beside Cooling symbol

11

Engineering Enable

- 1. Night Time Cooling Maximum available with PV Advance Module
- 2. Cooling Maximum must be enabled. (Set in Environment Tab in Eng Mode)

3. The 0-10v output is held at the Night Time Cooling Max value set in the PV screen

Note:

- a) If set to 0, the NT Cooling Max will be 0v (no cooling)
- b) Check box is only use to display the value
- c) NT Cooling is enable or Disable by the end user in Zone Advance Settings

ComeraghControls

6.1 FCU assist ufh ref Diff LL1 setup as Cooling (as usual)

6.2 FCU assist ufh ref Diff

Differential set up in Zone Differential Module

<u>Overview:</u> The FCU can be configure to use 2the 2nd load line to generate

heat to assist the ufh , if the air them is below the SP- Δ T (DtLo)

6.3 FCU assist ufh ref Diff Diff Setup

Zo	ne Differential			
Zn	Name	Source Idx Port	Hi/Ed Lo/St	
1	Kit/Liv/Din	Zone Ch 1	2 5	
2	WC	None		Zone Differential Setup
3	Bed 2	Zone	2 5	<u>Hi/ Ed (High/ End)</u>
4	Bathroom	None		Value : 2
5	Bed 1 Ensuite	None		This valve must be the Smaller value –
6	Bed 1	Zone Ch 1	2 5	<u>End</u> reference point for the U-10V control
7	Landing	None		Lo/St (Low / Start)
8	Not in Use			Value : 5
				This valve must be the Larger value – <u>Start</u> reference point for the 0-10v control
	1-8 9-16 17-2	4 25-32		DHW Differential Setup
				Hi = Larger value e.g.5
				Lo = Lower Value e.g. 2

7: PV8 0-10v Addressing Operation

8: PV8 0-10v Diagnostics- Hardware Test

8.1 : PV8 0-10v New layout with PV8 X 4 & Comms Notations

PV #1					InitHt
PV #1	PV #5		Output Max	DAC: 0 - Primary	D.Max
PV #2 PV #3	PV #6 PV #7		Min		D.Min
PV #4	PV #8	•	0		
√, √/Mod #: √,x/Mod #2	x,x/Mod #3 x,x/Mod #4	Min 22 Type SP + DB	Max 25 Type SP + DB + F3	Ref-Src Zone Idx Kit/Liv/Din	
		Reference	Zone T : 21ºC		
Interval(s)	Switch		Enable Cutoff Hi Enable Cutoff Lc Emulate Cal	Enable Flow Enable Dec Pt Enable RH Override Enable Dew Pt Override	ide
3.06.01-134 - 2.7			Nt Low Limit	Reverse DAC for Col	d Water

9: PV8 0-10v Calibration

Description

For each 0-10v output, the Max & Min output voltage can be calibrate to suite the attached FCU(s). Outlined below is the TICS calibration to suit the FCU(s) resistance via touch screen GUI (Graphical User Interface) This ensures the minimum and maximum voltage output levels correspond with requirements.

Access the require PV (Proportional Valve)

PV #1	LL:	Primary			
x, v/PV #1	-,-/PV #9		Output 040 Max	C: 8 Cutoff High	D.Max
-,-/PV #2	-,-/PV #10		8 🚔 .0		3
-,-/PV #3	-,-/PV #11		Min	Cutoff Low	D.Min
-,-/PV #4	-,-/PV #12		0 🚔 0	2 🔶 0	8
-,-/PV #5	-,-/PV #13	Min	Max	Source	
-,-/PV #6	-,-/PV #14	23 -	28	Zone	
-,-/PV #7	-,-/PV #15	Туре	Туре	Idx	
-,-/PV #8	-,-/PV #16		EB + DB + F3 ·	Kit-Liv	
		Reference E	mul In: 20		
Interval(s)	Switch	Idx	Cutoff Hi En	able Enable Flow	$ \frown $
20	Relay	IO #8	Cutoff Lo Er	nable 🔽 Enable Dec P	
	Primary	Rly #8	Emulate	Nt Low Limit	
	O Secondary		Cal	J	

Steps:

- 1. Access PV (Proportional Valve) GUI via Engineer Password access.
- 2. Select the require PV (Proportional Valve) (1-16 Available)
- 3. With the FCU attached to the required 01-0v output , place a DVM (Digital Volt Meter) on the output and set the range to DC volts
- 4. Check the "Cal" and "Emulate" functions on the screen
- The D. Min & D. Max can now be adjusted
- 5. Now calibrate the Min output voltage
- a. Set Cut Off Low to 2 v (Dac=51)
- b. Use the Emulate slider bar to move the output to its 1st increment setting
- c. The system will see the min is 2v and try to o/p 2v
- d. Now calibrate the mi to 2v
- 6. Use the Emulate slider bar to move the output to its maximum setting
- 7. Now calibrate the Max output voltage
- 8. Once you are satisfied with the output voltage , uncheck the "Cal" and "Emulate" functions on the screen

Example: GMF-P2 FCU 1: 0-10v O/P Setup Kitchen / Living / Dining

PV#1		
x_\/PV #1 x/PV #9	Dutput DAC: 0 Nax D.Max	Step 2: Setup Cut Off Lo
x, \/PV #2 x, -/PV #10	178 🚊	Set Cut off to 2 (on All FCU)
x,\/PV#3 x,-/PV#11	ItLow Cutoff Low D.Min	
x,\//PV #4 x,-/PV #12	2 2	Step 3: Setup Nt Lo Limit Set NT Cut off to 2 (on All
x,\/PV #5 x,-/PV #13 Min Max	Source	FCU)
x, 1/PV #6 x, -/PV #14 25 28	Zone	or disable
x,\/PV #7 x,-/PV #15 SP + DB SP +	DB + F3 V Kit/Liv/Din V	
x,\//PV #8 x,-/PV #16		Step 4: Setup Output Max Set Output Max FCU)
Reference Zone T : 04	C	
Interval(s) Switch	Cutoff Hi Enable Enable Flow	
	Emulate R Nt Low Limit	
_	1	
Step 1: Setup source Source Individual Zone	0-10 o/p Operation	
Idx: Select reference Zone e.g. Kitchen	[7]	
[SP+DB] & [SP+DB+F3]	[/v] / Ou	utput
Note DB (Deadband) set to 2 (Set in Eng / Zone SP Tab)	Cu	ut Off Low = $2v$
	[>(SP+DB)] [>(SP+DB+F	3)]
	[21+2] [21+2+5	·]
	[23°] [28°]	
	[Range 5 Steps]	

Example: Cambridge University - Charles Darwin- Cooling Via UF Pipework

Example of Operation

Step 1: System identifies the Hottest Zone

Zone 3 (Hottest Zone) has the following Settings SP = 20 DB = 4 F3 = 3

Step 2: System calculates the Desired Flow using Load Line

Ref Range [SP+DB=24] to [SP+DB+F3=27] Room Temp = 27 Flow Temp range is 19C-22C System calculate it needs a Desired Flow (DF)Temp of 19C

Step 3: System uses the Aux Flow Sensor as Feedback

Calculate Desired Flow Temp	19C
Actual Flow (FT) Temp	21C
System will starts opening 1-10 to	send more cold water to pipework

Step 4: 0-10V Modulations

Depending on whether the DF is greater or less then the FT, the proportional valve (PV) output (0-10v) will either step open or close. Depending on (Δ T) the difference between DF and FT, the 0-10v output the modulate in at a faster or slower rate.

 $[\Delta T>3^{\circ}c \text{ Step} = .8v] [3^{\circ}>\Delta T>2^{\circ}c \text{ Step} = .4v] [2^{\circ}>\Delta T>.5^{\circ}c \text{ Step} = .2v]$

UFH Initial Heat Up Sequence

Overview:

The UFH Initial Heat Up Sequence is used to slowly heat the scree over time

This operation will be carried out over 21 days after laying the cement screed or in accordance with the screed manufactures instructions, but at least 7 days in the case of anhydrite screed (BS EN 1264 4 2001)

Initial Heating applied to the primary curve (load Line) only

PV #1 xxxPV#1 xxxPV#2 xxxPV#3 xxxPV#3 xxxPV#5 xxxPV#5 xxxPV#6 xxxPV#6 xxxPV#7 xxxPV#8	xIPV #9 xIPV #10 xIPV #11 xIPV #12 xIPV #13 xIPV #14 xIPV #14 xIPV #16	Flow Max 22	Output Err : Max Min 0 4 Max 0 4	ErrldxReference Ref-Src Aux Sensor Idx	D.Max 255 ÷ D.Min 0 ÷	Flow-Src Aux Sensor Idx	•
		Reference Aux	Sr T : ErrIdxReference				
Interval(s) 20 ÷	Switch		Cutoff Hi Enable	Enable Flow Enable Dec Pt Nt Low Limit Reverse DAC for Cold Water		InitHt	

PV - Init	tial Heat Up	
This operatio manufacturer Heating appli	in shall be carried out at least 21 days after the laying of the cement screed or in accordance with th r's instructions but at least 7 days in the case of anhydrite screeds (Bs en 1264 4 2001). Initial les to the Primary curve only.	v
Initial Days	B = ⇒ at Temperature (°C) 20 = ÷	
Final Days	4 📑 at Temperature (°C) 25 📫	
Total Days	21 🗄	
Init	olize	
		2

Cancel	
Temperature will increase gradually after the initial heatup period of 3 days at 20°C to the Maximun of 25°C and will remain on for an additional 4 days.	n Temperature
Invalid Sensor Index.	
Headup Initialized: 271/1 Days Running: 0 Current T: 9°C Tarqet T: 28°C	

<u>Set-Up</u>

Attached an Digital Sensor & Probe to the Flow Pipe

Set this Sensor up as an Aux Sensor. (ST - Stat Type =1, SR Sequence No. 1)

On Primary Load Line: Select "Enable Flow"

(This sensor will be use as feedback, to ensure the desired Flow Temp is assigned) Attached Mix to the 0-10v port on the relevant I/O#

20°C

 $\left(25^{\circ}C\right)$

Now Press the INIT Button

Default Settings

Initial Days 3:	at Temperature
Final Days 4:	at Temperature
Total Day 21	

Press the Initialize button to begin Initialize

Operation

One operational the system will trach and display the following

- Start Date
- Days Running
- Current Temp
- Target Temp

Different Floor Types

Multiple different Init can be manage (Up to 16)

Separate Mixer and I/O required for each Init

Revision Notes

Rev(Date)Changes18.6.01.-126 (15-1-21)Cooling F1,F2,F3 Triggered when temp is ">" (as before), but also now includes "="
FCU will active if the room temp is > / = SP+DB+F1
This ensure the User Visual indicator F1, F2 F3, matches exactly FCU speed (DAC o/p)
Setting Change DB=1, F1=1,F2=2,F3=3 (Previously DB=2, F1=0,F2=1,F3=3)18.6.01.-134 (12-3-21)Qty PV8 increased from 2 to 4

